Программирование микроконтроллеров AVR на C. Регистры и порты микроконтроллера AVR Регистр входных данных порта А – PINA

Устройство микроконтроллера:
– назначение, устройство и программирование портов ввода-вывода микроконтроллера

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Ну вот, уважаемые радиолюбители, сегодня этой статьей я закончу загрузку ваших (и своих) мозгов чистой теорией. Дальше будет легче и приятней: теорию совместим с практикой.
Ну а сегодня мы рассмотрим очень важный и интересный вопрос – порты ввода/вывода микроконтроллера .

Порты ввода/вывода микроконтроллера AVR

Порты ввода/вывода (далее я буду писать сокращенно – ПВВ ) – предназначены для общения микроконтроллера с внешними устройствами . С их помощью мы передаем информацию другим устройствам и принимаем информацию от них. В зависимости от типа, микроконтроллер может иметь на своем борту от одного до семи ПВВ . Каждому порту ввода/вывода присвоено буквенное обозначение – A, B, C, D, E, F, G. Все порты в микроконтроллере равнозначные, восьмиразрядные (содержат восемь линий, они же выводы, они же разряды, они же биты) и двунаправленные – могут как передавать, так и принимать информацию. ПВВ в микроконтроллере обслуживают все его устройства, в том числе и периферийные. Поэтому, в зависимости от того какое устройство будет работать с портом он может принимать и передавать или цифровую информацию, или аналоговую.

Вообще, порты классифицируются по типу сигнала :
цифровые порты – которые работают с цифровыми сигналами – логическими “нулями” и логическими “единицами”
- аналоговые порты – которые работают с аналоговыми сигналами – использующими плавно весь диапазон входных напряжений от нуля вольт до напряжения питания МК
- смешанные порты – они и используются в наших МК , могут оперативно переключаться с режима “цифровой порт” в режим “аналоговый порт”, и обратно.

В технической литературе и схемам ПВВ обозначаются следующим образом:
– “Р ” – первая буква, означающая слово “порт”
– “А ” (В, С, D, E, F, G) – вторая буква, обозначающая конкретный порт
– “0 ” (1, 2, 3, 4, 5, 6, 7) – третий символ – цифра, обозначающая конкретный вывод (регистр, бит) порта.
К примеру: “порт А” – РА , “пятый разряд порта А” – РА5 .
Если в МК есть несколько портов, то не обязательно их имена могут идти по порядку – A, B, C. Может быть и так – В, С, D. Поэтому пугаться и судорожно искать где же порт А не надо.
Кроме того, хотя порты восьмиразрядные, выводов у порта не обязательно должно быть 8, может быть и меньше, к примеру 3 – PA0, PA1, PA2. В таком случае порт называют неполным, или урезанным.
Давайте посмотрим на конкретный МК – ATmega8:

Как видите, в этом МК порта с именем “А” нет (отсутствует как класс;). Порт РВ и порт PD – полные, имеют по восемь выводов. А порт С – неполный (ущемленный, нет места в корпусе МК для его вывода), в нем отсутствует восьмой разряд (реально, внутри корпуса МК, он есть, но работать мы с ним не можем).

Для управления портами в их электрической схеме имеется два переключателя, которыми мы можем “щелкать” программно, используя специальные регистры ввода/вывода . Такие переключатели имеются для каждого вывода, что означает возможность управлять любым выводом порта. К примеру, один вывод порта можно настроить на ввод информации, три разряда этого же порта на вывод, а оставшиеся вообще не настраивать, оставить их в “Z- состоянии” .
Давайте разберемся с этим вопросом конкретней, на примере вот этой схемы:

Обратите внимание на два переключателя – Sin и Sout , и сопротивление Rup .
С помощью Sin осуществляется переключение вывода порта или для работы на вход, или для работы на выход. Управляется этот переключатель с помощью регистра ввода/вывода DDRx . У каждого порта свой регистр. Каждый разряд регистра управляет соответствующим разрядом порта (нулевой – нулевым, первый – первым и т.д.). Символ “x” в названии порта заменяется соответствующим именем порта: для порта А – DDRA, для порта С – DDRC. При записи в разряд регистра DDRx “единицы”, соответствующий ему разряд порта переключается на вывод информации, а при записи “нуля” – на ввод информации. Просмотрите рисунки ниже, и вы поймете как работать с регистром DDRx.

1. Переключение всех выводов порта на вывод информации:


2. Переключение всех выводов порта на ввод информации:


3. Переключение части выводов порта на ввод, и части на вывод информации:

В “классическом” Ассемблере настройка выводов портов на ввод и вывод информации выглядит так (просто пример 3-го рисунка):

Idi R20, 0b01100010 - этой командой мы записываем в РОН R20 двоичное число 01100010, которым определяем – какой вывод порта будет работать на вывод (1), а какой на ввод (0) информации. В данном случаем разряды порта В 1,5,6 – настраиваются на вывод информации, а 0,2,3,4,7 – на ввод информации
Out DDRB, R20 - этой командой мы переносим содержимое РОН R20 в регистр ввода/вывода порта В.

В Algorithm Builder запись немного отличается:
#b01100010 –> DDRB
Дело в том, что Algorithm Builder несколько более смещен к языкам высокого уровня, поэтому мы просто прописываем “свое желание” одной строчкой, но а при компилировании (переводе в машинные коды), программа сама преобразует эту строчку как и в “классической” записи.

Второй переключатель – Sout . Этот переключатель имеет двойное назначение, в зависимости от настройки разрядов порта на вывод или ввод информации.
Если разряд порта настроен на вывод информации , то с его помощью мы устанавливаем на выходе разряда или логическую “1”, или логический “0” .
Если разряд порта настроен на ввод информации
, то с его помощью подключается так называемый “подтягивающий резистор” – Rup , или “внутренний нагрузочный резистор”
. Благодаря этому резистору упрощается подключение внешних кнопок и переключателей, т.к. обычно контакты требуют внешнего резистора.
Как и переключатель Sin, Sout – это регистр ввода/вывода под названием PORTx , где “х” – буквенное обозначение порта (к примеру для порта D регистр будет иметь вид – PORTD).
В семейств МК Mega имеется дополнительный переключатель – PUD , - 2-й разряд регистра ввода/вывода SFIOR (он называется “Регистр специальных функций”). С помощью этого PUD осуществляется общее управление подтягивающими резисторами:
- при записи в этот разряд “1” – все подтягивающие резисторы для всех портов отключаются;
– при записи в этот разряд “0” – состояние подтягивающих резисторов определяется регистром PORTx.
Зачем нужно общее отключение резисторов, да и этот PUD заодно, мы сегодня рассматривать не будем.
В режиме работы разрядов порта на вывод, задача регистра PORTx очень проста – то, что мы в него запишем, то и будет на выходе. Запишем одни “нули” – на выходах буду логические нули, запишем “единицы” – на выходе буду логические “единицы”.
Например:

Idi R20, 0b11111111
Out DDRB, R20
Выводим в разряды 0-3 логический ноль, а в разряды 4-7 логическую единицу:
Idi R20, 0b11110000
Out PORTB, R20
В Algorithm Builder:
#b11111111 –> DDRB
#b11110000 –> PORTB
Надеюсь, что пока все понятно.
Вышеприведенные примеры позволяют настроить весь порт сразу, и вывести нужные значения на все выводы порта за один раз.
Если необходимо настроить только один разряд порта на ввод или вывод, а также вывести “0” или “1” только в один разряд порта, не затрагивая состояние и содержание других разрядов этого порта, существуют следующие команды:
SBI A,b – установить разряд регистра
CBI A,b – сбросить разряд регистра
При этом: “А ” – номер регистра , “b ” – разряд этого регистра.
Данные команды работают не только с РВВ DDRx и PORTx, но и с теми, которые имеют номера от 0 до 31.


Пример:
- “классический” Ассемблер:
Настраиваем порт В на вывод информации:
Idi R20, 0b11111111
Out DDRB, R20
Нам нужно переключить 1-й разряд порта на ввод информации:
CBI $17, 1 (где $17 – номер РВВ порта В – DDRB, 1 – разряд порта В)
- Algorithm Builder:
#b11111111 –> DDRB
0 –> PORTB.1

У портов ввода/вывода есть еще один регистр: PINx , регистр выводов порта (“х” – буквенное обозначение порта)
Этот регистр предназначен для считывания информации с вывода порта, независимо в какой он конфигурации – на ввод, или на вывод. Записать в этот регистр мы ничего не можем, он предназначен только для считывания.

Состояние выводов портов в зависимости от их конфигурации:

* PUD нет в МК Tiny и в МК модели ATMega161

Подавляющее большинство контактов портов имеют дополнительные функции и используются периферийными устройствами. При этом может быть две ситуации: в одном случае мы должны самостоятельно задавать конфигурацию вывода, а в другом случае – вывод конфигурируется самостоятельно, при включении соответствующего периферийного устройства.

При сбросе или включении питания микроконтроллера все выводы всех портов (за очень-очень редким случаем) переводятся в высокоимпедансное состояние – “Z- состояние”. Этот момент следует учитывать в реальных схемах. Если нагрузкой выхода служит транзисторный ключ, то для того, чтобы его база (затвор полевого транзистора) не болтались в воздухе, необходимо ставить дополнительные внешние резисторы сопротивлением 10-100 кОм.

Если вы не используете выводы порта, то не следует их оставлять “парящими в воздухе” – из-за этого повышается потребляемый ток МК (почему – не так важно, но это так). Все неиспользуемые выходы в схеме рекомендуется нагружать на сопротивления 10-100 кОм (можно использовать и внутренние подтягивающие резисторы), или переводить выводы в режим цифровых выходов.

При использовании аналогового компаратора, следует следить, чтобы подтягивающие резисторы были отключены – иначе пострадают показания абсолютных уровней сигнала .

Подтягивающие резисторы не совсем “резисторы” – их роль выполняют полевые транзисторы, которые имеют большой технологический разброс – номинал подтягивающего сопротивления может колебаться в пределах 30-100 кОм. При мощных помехах, да и в других “критических случаях” рекомендуется (хотя такой рекомендации и нет в даташитах) подключать дополнительные подтягивающие резисторы номиналом 2-5 кОм. Такие резисторы следует устанавливать на вывод “Reset”, на выводы внешних прерываний, если они не используются. Также следует устанавливать резисторы при работе выводов МК на общую шину (I2C, или просто при подсоединении выхода МК к выходу другого устройства с открытым коллектором, при подключении к двухвыводным кнопкам). Сопротивление встроенного резистора в таких случаях слишком велико, чтобы отсеивать электромагнитные помехи.

Создаем программу «мигалку»

Итак, уважаемые читатели, мы уже ознакомились со структурой микроконтроллера, разобрали простые команды ассемблера. Теперь можно приступить к написанию простой программы.

Для этого нам понадобится среда AVRStudio (о которой упоминалось раньше) и середа для симуляции микроконтроллера – Proteus 7. В сети маса примеров по установке этих программ, так что на этом останавливаться не будем.

Первая наша программа будет состоять из:

Подключения файла директив, инициализации МК;

Настройки портов ввода-вывода МК;

Простейшего цикла переключения портов из логического состояния «0» в «1»;

Подпрограммы простой задержки с использованием регистров общего назначения.

При штатной установке программы AVR Studio, файлы с директивами микроконтроллера располагается по следующему адресу C:\Program Files\Atmel\AVR Tools\AvrAssembler\Appnotes.

В нашем примере будем использовать микроконтроллер Attiny2313. Его inc файл имеет название 2313def.

Для начала откроем программу AVR Studio 4 и создадим проект.

Нажимаем на клавишу создания нового проекта.

В последнем окне необходимо выбрать симулятор и тип нашего МК. Далее, нажимаем на клавишу «finish» и можно будет увидеть, как откроется новое окно нашего проекта.

Наш проект уже создан и его можно наполнять программным кодом. Как говорилось раньше, первым делом нужно подключить файл директив данного микроконтроллера. Если возникнет необходимость проводить симуляцию проекта в среде AVR Studio 4, то желательно указать еще и имя нашего МК. Для этого нужно прописать следующую строку «.device ATtiny2313».

Для подключения inc файла, нужно прописать.include “tn2313def.inc”. Тем самым мы разрешим компилятору использовать файл директив данного МК.

Этот файл существенно упрощает задачу программирования, так как мы можем придерживаться определенных стандартов и обращаться к разным адресам МК словами, а не цифрами.

К примеру, на следующем рисунке обозначена строка значения ОЗУ нашего МК. В программе мы пишем «spl», хотя можно написать и« $3d».

Правильно будет в обоих случаях, и компилятор не выдаст вам ошибок и предупреждений. Но так сложнее зрительно воспринимать команды.

Так как в разных микроконтроллерах эти адреса имеют свои значения, открыв новый проект, не совсем понятно будет, что там написано. А когда мы используем директивы, то все эти адреса заменяем понятными для нас словами. При желании в файле директив можно поменять все названия на свои. Но тут есть подвох, вы не сможете открыть и скомпилировать какой-то проект с интернета, точно так и ваш проект никто не сможет скомпилировать и проверить на ошибки или внести изменения. Для этого необходимо будет переделывать файлы директив.

Итак, на Листинге 1 приведу пример нашей простой программы.

Листинг 1.

Device Attiny2313 ; указываем тип устройства

Include “tn2313def.inc” ; подключаем файл директив МК ATtiny2313

Def temp = r16 ; задаем имя нашему регистру общего назначения

Org 0x0000 ; начало программы с 0 адреса

ldi temp,ramend ; грузим значение ramend в регистр temp

ser temp ; настраиваем все выводы порта В на выход

out DDRB, temp ;

sbi portb,5; устанавливаем логическую «1» в PORTB5

Итак, разберем все по строкам, что мы сделали.

Первым делом, на всякий случай указали тип устройства.device Attiny2313.

Подключили файл директив.include “tn2313def.inc”.

Для простоты написания программы задали регистру R16 имя.def temp = r16. Такая операция хорошо будет упрощать написание программы в дальнейшем. Ведь словесное название регистра нам проще запомнить, нежели просто писать R16. Таким образом, можно присвоить имя любому регистру начинаю от R0 и заканчивая R31.

Командой ser temp мы грузим в регистр temp значение 255 и выгружаем его в out DDRB. Тем самым конфигурируем порт на выход. В дальнейшем, при симуляции программы в Proteus 7, мы увидем как данные порты приймут состояние логического нуля.

Устанавливаем на порте вывода PB5 логическую единицу с помощью команды sbi portb,5.

В самом конце необходимо организовать какой-то цикл, чтобы микроконтроллер не завис.

После того как наша программа написана, можно компилировать проект. Для этого нажимаем клавишу F7. Если программа написана без ошибок, то появится диалоговое окно внизу проекта с зеленым кружочком и отчетом об использовании памяти и ошибок.

Открываем среду моделирования Proteus 7 и смотрим результат.

Теперь немного усложним задачу и заставим порт вывода переключаться с логического нуля в единицу. Для этого нам необходимо немного доработать нашу программу, Листинг 2. Все изменения происходит только в цикле «main», так что весь код не будем повторять.

Смотрим результат моделирования в среде Proteus 7, пподключив к выводу PB5 осциллограф.

Как видно, сигнал на выходе порта появился. Однако частота переключения близка к частоте микроконтроллера.

Чтобы понизить скорость переключения, нам необходимо воспользоваться простой задержкой. На Листинге 3 показан простой пример реализации задержки.

Листинг 3.

sbi portb,5; устанавливаем логическую “1” в PORTB5

rcall delay ;вызываем подпрограмму задержки

cbi portb,5; устанавливаем логический “0” в PORTB5

clr r20; очистить регистры

inc r20; добавить 1

cpi r20,200 ; сравниваем, R20 = 200 ?

brne d_1; если не равно, то переходим по метке d_1, иначе пропускаем

После выполнения данной программы скорость переключения порта снизилась до 100мс. Задавая значения сравнения в регистры R20 и R21 можно регулировать этот интервал. На следующем рисунке видим результат работы программы.

На этом закончим. В следующей части мы разберем примеры программы с подключением кнопок, напишем цикл бегущей строки.

Предыдущие статьи:

♦Арифметико-логическое устройство и организация памяти – память программ, память данных, энергонезависимая память

Введение

Все порты ввода-вывода (ПВВ) AVR-микроконтроллеров работают по принципу чтение-модификация-запись при использовании их в качестве портов универсального ввода-вывода. Это означает, что изменение направления ввода-вывода одной линии порта командами SBI и CBI будет происходит без ложных изменений направления ввода-вывода других линий порта. Данное распространяется также и на изменение логического уровня (если линия порта настроена на вывод) или на включение/отключение подтягивающих резисторов (если линия настроена на ввод). Каждый выходной буфер имеет симметричную характеристику управления с высоким втекающим и вытекающим выходными токами. Выходной драйвер обладает нагрузочной способностью, которая позволяет непосредственно управлять светодиодными индикаторами. Ко всем линиям портов может быть подключен индивидуальный выборочный подтягивающий к плюсу питания резистор, сопротивление которого не зависит от напряжения питания. На всех линиях ПВВ установлены защитные диоды, которые подключены к VCC и Общему (GND), как показано на рисунке 29. Подробный перечень параметров ПВВ приведен в разделе "Электрические характеристики".

Рисунок 29 – Эквивалентная схема линии ПВВ

Ссылки на регистры и биты регистров в данном разделе даны в общей форме. При этом, символ “x” заменяет наименование ПВВ, а символ “n” заменяет номер разряда ПВВ. Однако при составлении программы необходимо использовать точную форму записи. Например, PORTB3, означающий разряд 3 порта B, в данном документе записывается как PORTxn. Адреса физических регистров ввода-вывода и распределение их разрядов приведены в разделе “Описание регистров портов ввода-вывода".

Для каждого порта ввода-вывода в памяти ввода-вывода зарезервировано три ячейки: одна под регистр данных – PORTx, другая под регистр направления данных – DDRx и третья под состояние входов порта – PINx. Ячейка, хранящая состояние на входах портов, доступна только для чтения, а регистры данных и направления данных имеют двунаправленный доступ. Кроме того, установка бита выключения подтягивающих резисторов PUD регистра SFIOR отключает функцию подтягивания на всех выводах всех портов.

Ниже приведено описание порта ввода-вывода для универсального цифрового ввода-вывода. Большинство выводов портов поддерживают альтернативные функции встроенных периферийных устройств микроконтроллера. Описание альтернативных функций приведено далее в подразделе “Альтернативные функции порта” (см. также описание функций соответствующих периферийных модулей).

Обратите внимание, что для некоторых портов разрешение альтернативных функций некоторых выводов делает невозможным использование других выводов для универсального цифрового ввода-вывода.

Порты в качестве универсального цифрового ввода-вывода

Все порты являются двунаправленными портами ввода-вывода с опциональными подтягивающими резисторами. Рисунок 30 иллюстрирует функциональную схему одной линии порта ввода-вывода, обозначенный как Pxn.


Рисунок 30 – Организация универсального цифрового ввода-вывода (1)

Прим. 1: Сигналы WPx, WDx, RRx, RPx и RDx являются общими в пределах одного порта. Сигналы clkI/O, SLEEP, и PUD являются общими для всех портов.

Настройка выводов

Режим и состояние для каждого вывода определяется значением соответствующих разрядов трех регистров: DDxn, PORTxn и PINxn. Как показано в “Описании регистров портов ввода-вывода” доступ к битам DDxn возможен по адресу DDRx в пространстве ввода-вывода и, соответственно, к битам PORTxn по адресу PORTx, а к битам PINxn по адресу PINx.

Биты DDxn регистра DDRx определяют направленность линии ввода-вывода. Если DDxn = 1, то Pxn конфигурируется на вывод. Если DDxn=0, то Pxn конфигурируется на ввод.

Если PORTxn = 1 при конфигурации линии порта на ввод, то разрешается подключение подтягивающего резистора. Для выключения данного резистора необходимо записать в PORTxn лог. 0 или настроить линию порта на вывод. Во время сброса все линии портов находятся в третьем (высокоимпедансном) состоянии, даже если не работает синхронизация.

Если PORTxn = 1 при конфигурации линии порта на вывод, то состояние выхода будет определяться значением PORTxn.

Поскольку одновременная запись в регистры DDRx и PORTx невозможна, то при переключении между третьим состоянием ({DDxn, PORTxn} = 0b00) и выводом лог. 1 ({DDxn, PORTxn} = 0b11) должно возникнуть промежуточное состояние или с подключенным подтягивающим резистором ({DDxn, PORTxn} = 0b01) или с выводом лог. 0 ({DDxn, PORTxn} = 0b10). Как правило, переход через состояние с подключением подтягивающего резистора эквивалентно состоянию вывода лог.1, если вывод микроконтроллера связан с высокоимпедансным входом. В противном случае, необходимо установить бит PUD регистра SFIOR для выключения всех подтягивающих резисторов на всех портах

Переключение между вводом с подтягивающими резисторами и выводом низкого уровня связано с аналогичной проблемой. Поэтому, пользователь вынужден использовать или третье состояние ({DDxn, PORTxn} = 0b00) или вывод лог. 1 ({DDxn, PORTxn} = 0b11) в качестве промежуточного шага.

В таблице 25 подытоживается действие управляющих сигналов на состояние вывода.

Таблица 25 – Настройка вывода порта

DDxn PORTxn PUD (в SFIOR) Ввод-вывод Подтягивающий резистор Комментарий
0 0 X Ввод Нет
0 1 0 Ввод Да Pxn будет источником тока при подаче внешнего низкого уровня
0 1 1 Ввод Нет Третье состояние (Z-состояние)
1 0 X Вывод Нет Вывод лог. 0 (втекающий ток)
1 1 X Вывод Нет Вывод лог. 1 (вытекающий ток)

Считывание состояние вывода

Независимо от значения бита направления данных DDxn состояние вывода порта может быть опрошено через регистровый бит PINxn. Как показано на рисунке 30 регистровый бит PINxn и предшествующая ему триггерная защелка составляют синхронизатор. Данный подход позволяет избежать метастабильности, если изменение состояния на выводе произошло около фронта внутренней синхронизации. Однако такой подход связан с возникновением задержки. На рисунке 31 представлена временная диаграмма синхронизации во время опроса внешне приложенного к выводу уровня. Длительности минимальной и максимальной задержек на распространение сигнала обозначены как tpd,max и tpd,min, соответственно.


Рисунок 31 – Синхронизация во время опроса приложенного к выводу порта уровня

В следующих примерах показано как установить на линиях 0 и 1 порта В уровень лог. 1, а на линиях 2 и 3 – лог. 0, а также как настроить линии 4…7 на ввод с подключением подтягивающих резисторов на линиях 6 и 7. Результирующее состояние линий считываются обратно, но, с учетом сказанного выше, включена инструкция nop для обеспечения возможности обратного считывания только что назначенного состояния некоторых выводов.

Пример кода на Ассемблере (1) ... ; Разрешаем подтягивание и устанавливаем высокие выходные уровни; Определяем направления данных линий портов ldi r16,(1<

Прим. 1: В программе на Ассемблере используются два временных регистра для минимизации интервала времени от настройки подтягивающих резисторов на разрядах 0, 1, 6 и 7 до корректной установки бит направления, разрешающих вывод лог. 0 на линиях 2 и 3 и заменяющих высокий уровень на разрядах 0 и 1, образованный за счет подключения подтягивающих резисторов, на высокий уровень сильноточного драйвера.

Разрешение цифрового ввода и режимы сна

Как показано на рисунке 30 входной цифровой сигнал может быть зашунтирован к общему на входе триггера Шмита. Сигнал, обозначенный на рисунке как SLEEP, устанавливается при переводе микроконтроллера в режим выключения (Power-down), экономичный режим, дежурный режим и расширенный дежурный режим. Это позволяет избежать повышения потребляемого тока в случае, если некоторые входные сигналы окажутся в плавающем состоянии или уровень входного аналогового сигнала будет близок к VCC/2.

Сигнал SLEEP игнорируется по входам внешних прерываний. Если запросы на внешнее прерывание отключены, то SLEEP действует и на эти выводы. SLEEP также игнорируется на некоторых других входах при выполнении их альтернативных функций (см. “Альтернативные функции порта ”).

Если на выводе внешнего асинхронного прерывания, настроенный на прерывание по нарастающему фронту, падающему фронту или на любое изменение, присутствует уровень лог. 1 и при этом внешнее прерывание не разрешено, то соответствующий флаг внешнего прерывания будет установлен при выходе из выше упомянутых режимов сна, т.к. функция шунтирования на входе в режимах сна приводит возникновению логических изменений.

Неподключенные выводы

Если несколько выводов остаются неиспользованными, то рекомендуется гарантировать на них присутствие определенного логического уровня. Не смотря на то, что большинство цифровых входов отключены в режимах глубокого сна, как описано выше, необходимо избежать наличия плавающих входов во избежание повышенного потребления тока во всех других режимах работы микроконтроллера, где цифровой ввод разрешен (Сброс, Активный режим и режим холостого).

Самым простым методом гарантирования присутствия определенного уровня на неиспользуемом выводе является разрешение подключения внутреннего подтягивающего резистора. Однако в этом случае в режиме сброса подтягивающие резисторы будут отключены. Если требуется малое потребление и в режиме сброса, то необходимо устанавливать внешний подтягивающий резистор к плюсу или к минусу питания. Подключение выводов непосредственно к VCC или GND не рекомендуется, т.к. может возникнуть опасный ток при случайной конфигурации такого вывода на вывод данных.

С внешним миром микроконтроллер общается через порты ввода вывода. Схема порта ввода вывода указана в даташите:

Итак, что же представляет собой один вывод микроконтроллера. Вначале на входе стоит небольшая защита из диодов, она призвана защитить ввод микроконтроллера от превышения напряжения. Если напряжение будет выше питания, то верхний диод откроется и это напряжение будет стравлено на шину питания, где с ним будет уже бороться источник питания и его фильтры. Если на ввод попадет отрицательное (ниже нулевого уровня) напряжение, то оно будет нейтрализовано через нижний диод и погасится на землю. Впрочем, диоды там хилые и защита эта помогает только от микроскопических импульсов от помех . Если же ты по ошибке вкачаешь в ножку микроконтроллера вольт 6-7 при 5 вольтах питания, то никакой диод его не спасет.

Дальше идут ключи управления. Это я их нарисовал рубильниками, на самом деле там стоят полевые транзисторы, но особой сути это не меняет. А рубильники наглядней.
Каждый рубильник подчинен логическому условию которое я подписал на рисунке. Когда условие выполняется — ключ замыкается. PIN, PORT, DDR это регистры конфигурации порта.

Есть в каждом контроллере AVR PIC есть тоже подобные регистры, только звать их по другому).

Например, смотри в даташите на цоколевку микросхемы:

Видишь у каждой почти ножки есть обозначение Pxx . Например, PB4 где буква «B» означает имя порта, а цифра — номер бита в порту. За порт «B» отвечают три восьмиразрядных регистра PORTB, PINB, DDRB , а каждый бит в этом регистре отвечает за соответствующую ножку порта. За порт «А » таким же образом отвечают PORTA, DDRA, PINA .

PINх
Это регистр чтения. Из него можно только читать. В регистре PINx содержится информация о реальном текущем логическом уровне на выводах порта. Вне зависимости от настроек порта. Так что если хотим узнать что у нас на входе — читаем соответствующий бит регистра PINx Причем существует две границы: граница гарантированного нуля и граница гарантированной единицы — пороги за которыми мы можем однозначно четко определить текущий логический уровень. Для пятивольтового питания это 1.4 и 1.8 вольт соответственно. То есть при снижении напряжения от максимума до минимума бит в регистре PIN переключится с 1 на 0 только при снижении напруги ниже 1.4 вольт, а вот когда напруга нарастает от минимума до максимума переключение бита с 0 на 1 будет только по достижении напряжения в 1.8 вольта. То есть возникает гистерезис переключения с 0 на 1, что исключает хаотичные переключения под действием помех и наводок, а также исключает ошибочное считывание логического уровня между порогами переключения.

При снижении напряжения питания разумеется эти пороги также снижаются, график зависимости порогов переключения от питающего напряжения можно найти в даташите.

DDRx
Это регистр направления порта. Порт в конкретный момент времени может быть либо входом либо выходом (но для состояния битов PIN это значения не имеет. Читать из PIN реальное значение можно всегда).

  • DDRxy=0 — вывод работает как ВХОД.
  • DDRxy=1 вывод работает на ВЫХОД.

PORTx
Режим управления состоянием вывода. Когда мы настраиваем вывод на вход, то от PORT зависит тип входа (Hi-Z или PullUp, об этом чуть ниже).
Когда ножка настроена на выход , то значение соответствующего бита в регистре PORTx определяет состояние вывода. Если PORTxy=1 то на выводе лог1, если PORTxy=0 то на выводе лог0.
Когда ножка настроена на вход , то если PORTxy=0 , то вывод в режиме Hi-Z . Если PORTxy=1 то вывод в режиме PullUp с подтяжкой резистором в 100к до питания.

Есть еще бит PUD (PullUp Disable) в регистре SFIOR он запрещает включение подтяжки сразу для всех портов. По дефолту он равен 0. Честно говоря, я даже не знаю нафиг он нужен — ни разу не доводилось его применять и даже не представляю себе ситуацию когда бы мне надо было запретить использование подтяжки сразу для всех портов. Ну да ладно, инженерам Atmel видней, просто знай что такой бит есть. Мало ли, вдруг будешь чужую прошивку ковырять и увидишь что у тебя подтяжка не работает, а вроде как должна. Тогда слазаешь и проверишь этот бит, вдруг автор прошивки заранее где то его сбросил.

Общая картина работы порта показана на рисунке:


Теперь кратко о режимах:

  • Режим выхода
    Ну тут, думаю, все понятно — если нам надо выдать в порт 1 мы включаем порт на выход (DDRxy=1 ) и записываем в PORTxy единицу — при этом замыкается верхний ключ и на выводе появляется напряжение близкое к питанию. А если надо ноль, то в PORTxy записываем 0 и открывается уже нижний вентиль, что дает на выводе около нуля вольт.
  • Вход Hi-Z — режим высокоимпендансного входа.
    Этот режим включен по умолчанию. Все вентили разомкнуты, а сопротивление порта очень велико . В принципе, по сравнению с другими режимами, можно его считать бесконечностью. То есть электрически вывод как бы вообще никуда не подключен и ни на что не влияет. Но! При этом он постоянно считывает свое состояние в регистр PIN и мы всегда можем узнать что у нас на входе — единица или ноль. Этот режим хорош для прослушивания какой либо шины данных, т.к. он не оказывает на шину никакого влияния. А что будет если вход висит в воздухе? А в этом случае напряжение будет на нем скакать в зависимости от внешних наводок, электромагнитных помех и вообще от фазы луны и погоды на Марсе (идеальный способ нарубить случайных чисел!). Очень часто на порту в этом случае нестабильный синус 50Гц — наводка от сети 220В, а в регистре PIN будет меняться 0 и 1 с частотой около 50Гц
  • Вход PullUp — вход с подтяжкой.
    При DDRxy=0 и PORTxy=1 замыкается ключ подтяжки и к линии подключается резистор в 100кОм, что моментально приводит неподключенную никуда линию в состояние лог1. Цель подтяжки очевидна — недопустить хаотичного изменения состояния на входе под действием наводок. Но если на входе появится логический ноль (замыкание линии на землю кнопкой или другим микроконтроллером/микросхемой), то слабый 100кОмный резистор не сможет удерживать напряжение на линии на уровне лог1 и на входе будет нуль.

Также почти каждая ножка имеет дополнительные функции . На распиновке они подписаны в скобках. Это могут быть выводы приемопередатчиков, разные последовательные интерфейсы, аналоговые входы, выходы ШИМ генераторов. Да чего там только нет. По умолчанию все эти функции отключены , а вывод управляется исключительно парой DDR и PORT , но если включить какую-либо дополнительную функцию, то тут уже управление может полностью или частично перейти под контроль периферийного устройства и тогда хоть запишись в DDR/PORT — ничего не изменится. До тех пор пока не выключишь периферию занимающую эти выводы.
Например, приемник USART . Стоит только выставить бит разрешения приема RXEN как вывод RxD , как бы он ни был настроен до этого, переходит в режим входа.

Совет:
С целью снижения энергопотребления и повышения надежности рекомендуется все неиспользованные пины включить в режим PullUp тогда их не будет дергать туда сюда помехой, а если на порт свалится грубая сила (например, монтажник отвертку уронит и коротнет на землю) то линия не выгорит.

Как запомнить режимы, чтобы не лазать каждый раз в справочник:
Чем зазубривать или писать напоминалки, лучше понять логику разработчиков, проектировавших эти настройки, и тогда все запомнится само.

Итак:

  • Самый безопасный для МК и схемы, ни на что не влияющий режим это Hi-Z.
  • Очевидно что этот режим и должен быть по дефолту.
  • Значения большинства портов I/O при включении питания/сбросе = 0х00, PORT и DDR не исключение.
  • Соответственно когда DDR=0 и PORT=0 это High-Z — самый безопасный режим, оптимальный при старте.
  • Hi-Z это вход, значит при DDR=0 нога настроена на вход. Запомнили.
  • Однако, если DDR=0 — вход, то что будет если PORT переключить в 1?
  • Очевидно, что будет другой режим входа. Какой? Pullup, другого не дано! Логично? Логично. Запомнили.
  • Раз дефолтный режим был входом и одновременно в регистрах нуль, то для того, чтобы настроить вывод на выход надо в DDR записать 1.
  • Ну, а состояние выхода уже соответствует регистру PORT — высокий это 1, низкий это 0.
  • Читаем же из регистра PIN.

Есть еще один способ, мнемонический:
1 похожа на стрелку. Стрелка выходящая из МК — выход. Значит DDR=1 это выход! 0 похож на гнездо, дырку — вход! Резистор подтяжки дает в висящем порту единичку, значит PORT в режиме Pullup должен быть в единичке!

Все просто! :)

Для детей в картинках и комиксах:)
Для большей ясности с режимами приведу образный пример:

В режиме PullUp эту планку мы пружиной подтянули кверху. Слабые помехи не смогут больше ее дрыгать как угодно. С другой стороны шине она может помешать, но не факт что заблокирует ее работу. От шины зависит и ее силы. А еще мы можем отслеживать тупую внешнюю силу, вроде кнопки, которая может взять и придавить ее к земле. Тогда мы узнаем что кнопка нажата.


В режиме OUT у нас планка прибита гвоздями к земле или прижата домкратом к питанию. Внешняя сила может ее пересилить только сломав домкрат или сломается сама. Тупая внешняя сила просто разрушает наш домкрат или вырывает гвозди из пола с мясом. В любом случае — девайс в помойку.

Любое устройство на микроконтроллере AVR использует порты ввода вывода. Для работы с портами у AVR`ок есть три регистра: PORTx, PINx и DDRx, где x - буква порта, например A, B, C и т.д.
Регистр DDRx - определяет направление выводов микроконтроллера, PINx позволяет читать их состояние, "осязать" внешний мир, а PORTx в зависимости от направления вывода или задает его логический уровень, или подключает подтягивающий резистор.
Выводы микроконтроллера в проекте обычно задают с помощью макроопределений - define`ов. Мы получаем некую "отвязку" от железа и в дальнейшем это позволяет нам переназначать выводы на другие порты. Например, это может выглядеть так.


#define BUT_PIN 3
#define BUT_PORTX PORTB
# define BUT_DDRX DDRB
#define BUT_PINX PINB

Неудобство такого подхода состоит в том, что для каждого вывода нужно определять три регистра. Бывает, что два (только PORTx и DDRx), но это тоже неудобно, если выводов много. Существует другой подход, позволяющий сократить число макроопределений. Разберемся в чем он заключается.

В микроконтроллер atmega16 регистр PORTB имеет адрес 0x18, а регистры DDRB и PINB - 0x17 и 0x16 соответственно. Тоже самое и с регистрами остальных портов, они тоже расположены друг за другом. Мы можем определить в проекте только один регистр, а к остальным обращаться вычисляя их адрес. За основу можно взять любой из них, главное ничего не напутать. Лучше всего для этих целей использовать макросы. Если отталкиваться от регистров PORTx, то макросы будут выглядеть так.


//это макросы для доступа к регистрам порта
#define PortReg(port) (*(port))
#define DirReg(port) (*((port) - 1))
#define PinReg(port) (*((port) - 2))

Макросы принимают в качестве параметра адрес регистра PORTx. Для взятия адреса регистра используется оператор &. Посмотрим, как можно использовать эти макросы.


//определили вывод мк
#define BUT_PIN 3
#define BUT_PORT PORTB
...
// конфигурируем вывод как вход
DirReg(&BUT_PORT) &= ~(1<//включаем подтягивающий резистор
PortReg(&BUT_PORT) |= (1<

...
//проверяем нажата ли кнопка
if(! (PinReg(&BUT_PORT)&(1< ...
}

Как видите, определять выводы теперь можно намного короче, однако за удобство приходится платить вставкой макросов.

Компилятор преобразует эти макросы в очень компактный код. Точно такой же, как если бы мы обращались к регистрам используя их имена. И дело в том, что с точки зрения ассемблера это так и есть. Если вы посмотрите ассемблерный код этих примеров, то увидите, что обращение к регистрам осуществляется методом прямой адресации с помощью команд IN, OUT. Поэтому я и озаглавил этот раздел "ненастоящая работа с портом через указатели". Указатели вроде как используются, но на самом деле нет.
Такой подход можно использовать не со всеми микроконтроллерами AVR, потому что в некоторых моделях регистры порта располагаются не по соседним адресам. Как, например, регистры порта F в микроконтроллере ATmega128.

Настоящая работа с портом через указатель

Иногда приходится прибегать к работе с портом, используя настоящий указатель. Для этого создается переменная указатель, которая инициализируется адресом какого-нибудь регистра порта. Делается это следующим образом.


//объявляем указатель на регистр
//обязательно должно присутствовать volatile
volatile uint8_t *portReg;

//инициализация
//передаем адрес регистра PORTB
portReg = &PORTB;

//вывод в порт через указатель
//перед указателем ставиться оператор *
(*portReg) = 0xff;

Также этот указатель можно передавать в функцию.


void OutPort(volatile uint8_t *pReg, uint8_t data)
{
*pReg = data;
}

...
//записываем в PORTB число 0xff
OutPort(&PORTB, 0xff);

//а здесь уже не нужен оператор &
//так как мы передаем переменную с адресом порта
OutPort(portReg, 0xff);

Работа с портом через указатель открывает большие возможности. Например, мы можем определить структуру, которая будет хранить все настройки пина микроконтроллера и обращаться к выводу, используя эту структуру. Или можем определить структуру виртуального порта содержащую выводы микроконтроллера из разных физических портов.
Все это так, но есть ложка дегтя. Работа с регистрами порта через указатель "тяжеловесна" с точки зрения размера кода и его быстродействия. Чтобы в этом убедиться, достаточно взглянуть на получаемый ассемблерный код. Если эти два фактора не критичны, то такой подход можно использовать, если нет, то придется работать по старинке.
Также п ри работе с портом через указатели, даже операция установки/сброса разряда будет неатомарна. Атомарность операций в этом случае нужно обеспечивать самостоятельно.

Вот небольшой пример, как можно использовать указатели при работе с портом.


//струтура для хранения настроек вывода - номера и порта
typedef struct outputs{
uint8_t pin;
volatile uint8_t *portReg;
}outputs_t;

//функция инициализации
void OUT_Init(outputs_t *out, uint8_t pin, volatile uint8_t *port, uint8_t level)
{
//сохраняем настройки в структуру
out->pin = pin;
out->portReg = port;

//конфигурируем вывод на выход
(*(port-1)) |= (1<

//задаем логический уровень
if (level) {
(*port) |= (1< }
else{
(*port) &= ~(1< }
}

//установить на выходе 1
void OUT_Set(outputs_t *out)
{
(*(out->portReg)) |= (1 << out->pin);
}

//установить на выходе 0
void OUT_Clear(outputs_t *out)
{
(*(out->portReg)) &= ~(1 << out->pin);
}

Пример использования


//определили вывод мк
#define OUT1_PIN 4
#define OUT1_PORT PORTB
...
//объявляем переменную для хранения
//настроек пина
outputs_t out1;

//инициализируем ее
OUT_Init(&out1, OUT1_PIN, OUT1_PORT, 0);

//устанавливаем 1 на выводе OUT1_PIN
OUT_Set(&out1);

Еще один пример работы с портом через указатели есть в коде к статье "


Top